Exceptionally tough and notch-insensitive magnetic hydrogels.
نویسندگان
چکیده
Most existing magnetic hydrogels are weak and brittle. The development of strong and tough magnetic hydrogels would extend their applications into uncultivated areas, such as in actuators for soft machines and guided catheters for magnetic navigation systems, which is still a big challenge. Here a facile and versatile approach to fabricating highly stretchable, exceptionally tough and notch-insensitive magnetic hydrogels, Fe(3)O(4)@Fe-alginate/polyacrylamide (PAAm), is developed, by dispersing alginate-coated Fe(3)O(4) nanoparticles into the interpenetrating polymer networks of alginate and PAAm, with hybrid physical and chemical crosslinks. A cantilever bending beam actuator as well as a proof-of-concept magnetically guided hydrogel catheter is demonstrated. The method proposed in this work can be integrated into other strong and tough magnetic hydrogels for the development of novel hydrogel nanocomposites with both desirable functionality and superior mechanical properties.
منابع مشابه
Versatile controlled ion release for synthesis of recoverable hybrid hydrogels with high stretchability and notch-insensitivity.
A versatile ion release mediated by GDL is demonstrated to achieve a controlled homogeneous crosslinking of alginate chains, which is critical for the synthesis of highly stretchable and notch-insensitive hybrid hydrogels with controlled properties.
متن کاملMulti-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks.
As swollen polymer networks in water, hydrogels are usually brittle. However, hydrogels with high toughness play critical roles in many plant and animal tissues as well as in diverse engineering applications. Here we review the intrinsic mechanisms of a wide variety of tough hydrogels developed over the past few decades. We show that tough hydrogels generally possess mechanisms to dissipate sub...
متن کاملTough Bonding of Hydrogels to Diverse Nonporous Surfaces
In many animals, the bonding of tendon and cartilage to bone is extremely tough (for example, interfacial toughness ∼800 J m(-2); refs ,), yet such tough interfaces have not been achieved between synthetic hydrogels and non-porous surfaces of engineered solids. Here, we report a strategy to design tough transparent and conductive bonding of synthetic hydrogels containing 90% water to non-porous...
متن کاملVersatile Molding Process for Tough Cellulose Hydrogel Materials
Shape-persistent and tough cellulose hydrogels were fabricated by a stepwise solvent exchange from a homogeneous ionic liquid solution of cellulose exposure to methanol vapor. The cellulose hydrogels maintain their shapes under changing temperature, pH, and solvents. The micrometer-scale patterns on the mold were precisely transferred onto the surface of cellulose hydrogels. We also succeeded i...
متن کاملHRP-mediated polymerization forms tough nanocomposite hydrogels with high biocatalytic performance.
This communication describes the mild and quick construction of tough nanocomposite hydrogels via a horseradish peroxidase-mediated radical polymerization for effectively immobilizing enzymes to attain high catalytic performance in various solvents.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft matter
دوره 11 42 شماره
صفحات -
تاریخ انتشار 2015